skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sambado, Samantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundEctothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in the dynamics of tick-borne disease in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in arid climates because ticks spend less time seeking for blood meals (i.e. questing) due to desiccation pressures. As a result, traditional collection methods like dragging or flagging are less effective. To improve our understanding of juvenile tick seasonality across a latitudinal gradient, we examinedIxodes pacificusphenology on lizards, the primary juvenile tick host in California, and explored how climate factors influence phenological patterns. MethodsBetween 2013 and 2022, ticks were removed from 1527 lizards at 45 locations during peak tick season (March–June). Tick counts were categorized by life stage (larvae and nymphs) and linked with remotely sensed climate data, including monthly maximum temperature, specific humidity and Palmer Drought Severity Index (PDSI). Juvenile phenology metrics, including tick abundances on lizards, Julian date of peak mean abundance and temporal overlap between larval and nymphal populations, were analyzed along a latitudinal gradient. Generalized additive models (GAMs) were applied to assess climate-associated variation in juvenile abundance on lizards. ResultsMean tick abundance per lizard ranged from 0.17 to 47.21 across locations, with the highest abundance in the San Francisco Bay Area and lowest in Los Angeles, where more lizards had zero ticks attached. In the San Francisco Bay Area, peak nymphal abundance occurred 25 days earlier than peak larval abundance. Temporal overlap between larval and nymphal stages at a given location varied regionally, with northern areas showing higher overlap, possibly due to the bimodal seasonality of nymphs. We found that locations with higher temperatures and increased drought stress were linked to lower tick abundances, although the magnitude of these effects depended on regional location. ConclusionsOur study, which compiled 10 years of data, reveals significant regional variation in juvenileI. pacificusphenology across California, including differences in abundance, peak timing, and temporal overlap. These findings highlight the influence of local climate on tick seasonality, with implications for tick-borne disease dynamics in a changing climate. Graphical Abstract 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Abstract Changing climate has driven shifts in species phenology, influencing a range of ecological interactions from plant–pollinator to consumer–resource. Phenological changes in host–parasite systems have implications for pathogen transmission dynamics. The seasonal timing, or phenology, of peak larval and nymphal tick abundance is an important driver of tick‐borne pathogen prevalence through its effect on cohort‐to‐cohort transmission. Tick phenology is tightly linked to climatic factors such as temperature and humidity. Thus, variation in climate within and across regions could lead to differences in phenological patterns. These differences may explain regional variation in tick‐borne pathogen prevalence of the Lyme disease‐causingBorreliabacteria in vector populations in the United States. For example, one factor thought to contribute to high Lyme disease prevalence in ticks in the eastern United States is the asynchronous phenology of ticks there, where potentially infected nymphal ticks emerge earlier in the season than uninfected larval ticks. This allows the infected nymphal ticks to transmit the pathogen to hosts that are subsequently fed upon by the next generation of larval ticks. In contrast, in the western United States where Lyme disease prevalence is generally much lower, tick phenology is thought to be more synchronous with uninfected larvae emerging slightly before, or at the same time as, potentially infected nymphs, reducing horizontal transmission potential. Sampling larval and nymphal ticks, and their host‐feeding phenology, both across large spatial gradients and through time, is challenging, which hampers attempts to conduct detailed studies of phenology to link it with pathogen prevalence. In this study, we demonstrate through intensive within‐season sampling that the relative abundance and seasonality of larval and nymphal ticks are highly variable along a latitudinal gradient and likely reflect the variable climate in the far western United States with potential consequences for pathogen transmission. We find that feeding patterns were variable and synchronous feeding of juvenile ticks on key blood meal hosts was associated with mean temperature. By characterizing within‐season phenological patterns of the Lyme disease vector throughout a climatically heterogeneous region, we can begin to identify areas with high potential for tick‐borne disease risk and underlying mechanisms at a finer scale. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Mosquito‐borne diseases contribute substantially to the global burden of disease, and are strongly influenced by environmental conditions. Ongoing and rapid environmental change necessitates improved understanding of the response of mosquito‐borne diseases to environmental factors like temperature, and novel approaches to mapping and monitoring risk. Recent development of trait‐based mechanistic models has improved understanding of the temperature dependence of transmission, but model predictions remain challenging to validate in the field. Using West Nile virus (WNV) as a case study, we illustrate the use of a novel remote sensing‐based approach to mapping temperature‐dependent mosquito and viral traits at high spatial resolution and across the diurnal cycle. We validate the approach using mosquito and WNV surveillance data controlling for other key factors in the ecology of WNV, finding strong agreement between temperature‐dependent traits and field‐based metrics of risk. Moreover, we find that WNV infection rate in mosquitos exhibits a unimodal relationship with temperature, peaking at ~24.6–25.2°C, in the middle of the 95% credible interval of optimal temperature for transmission of WNV predicted by trait‐based mechanistic models. This study represents one of the highest resolution validations of trait‐based model predictions, and illustrates the utility of a novel remote sensing approach to predicting mosquito‐borne disease risk. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Habitat loss and forest fragmentation are often linked to increased pathogen transmission, but the extent to which habitat isolation and landscape connectivity affect disease dynamics through movement of disease vectors and reservoir hosts has not been well examined. Tick-borne diseases are the most prevalent vector-borne diseases in the United States and on the West Coast,Ixodes pacificusis one of the most epidemiologically important vectors. We investigated the impacts of habitat fragmentation on pathogens transmitted byI. pacificusand sought to disentangle the effects of wildlife communities and landscape metrics predictive of pathogen diversity, prevalence and distribution. We collected pathogen data for four co-occurring bacteria transmitted byI. pacificusand measured wildlife parameters. We also used spatial data and cost-distance analysis integrating expert opinions to assess landscape metrics of habitat fragmentation. We found that landscape metrics were significant predictors of tick density and pathogen prevalence. However, wildlife variables were essential when predicting the prevalence and distribution of pathogens reliant on wildlife reservoir hosts for maintenance. We found that landscape structure was an informative predictor of tick-borne pathogen richness in an urban matrix. Our work highlights the implications of large-scale land management on human disease risk. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co- infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dy- namics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and hel- minths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro- parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associ- ated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co- infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance. 
    more » « less
  6. Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change. 
    more » « less
  7. Abstract Large‐bodied wild ungulates are declining worldwide, while domestic livestock continue to increase in abundance. Such changes in large herbivore communities should have strong effects on the control of ticks and tick‐borne disease as they can indirectly modify habitat and directly serve as final hosts for ticks' lifecycles. Numerous studies have now linked changing ungulate communities to changes in tick populations and disease risk. However, the effects of changing large herbivore communities are variable across studies, and the effect of climate as a mediating factor of this variation remains poorly understood. Also, studies to date have largely focused on wildlife loss without considering the extent to which livestock additions may alter tick populations, even though livestock replacement of wildlife is the global norm. In this study, we used a large‐scale exclosure experiment replicated along a topo‐climatic gradient to examine the effects on tick populations of both large herbivore removal and livestock additions. We found that while questing ticks increased modestly, by 21%, when large herbivores were removed from a system they decreased more substantially, by 50%, when livestock (in the form of cattle) were added. Importantly, in addition to the direct effects of climate on tick populations, climate also mediates the effect of ungulates on questing tick density. Particularly, the addition of livestock under the most arid conditions decreased tick presence, likely due to changes in ground‐level microclimates away from those beneficial to ticks. Overall, the work contributes to our understanding of tick population responses to globally common human‐induced rangeland alterations under the concurrent effects of climate change. 
    more » « less
  8. ABSTRACT Quantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor. In this study, we use a weather‐radar‐based bat‐monitoring algorithm to estimate bat foraging distributions during the peak season of 2019 in California's Northern Central Valley. This region is characterized by valuable agricultural crops and significant populations of both crop and nuisance pests, including midges, moths, mosquitos, and flies. Our results show that bat activity is high but unevenly distributed, with rice fields experiencing significantly elevated activity compared to other land cover types. Specifically, bat activity over rice fields is 1.5 times higher than over any other land cover class and nearly double that of any other agricultural land cover. While irrigated rice fields may provide abundant prey, wetland and water areas showed less than half the bat activity per hectare compared to rice fields. Controlling for land cover type, we found bat activity significantly associated with higher flying insect abundance, indicating that bats forage in areas where crop and nuisance pests are likely to be found. This study demonstrates the effectiveness of radar‐based bat monitoring in identifying where and when bats provide ecosystem services. 
    more » « less
  9. null (Ed.)
  10. Macaluso, Kevin (Ed.)
    Abstract The western black-legged tick (Ixodes pacificus) is the most frequently identified human-biting tick species in the western United States and the principal vector of at least three recognized bacterial pathogens of humans. A potentially pathogenic Rickettsia species, first described in 1978 and recently characterized as a novel transitional group agent designated as Rickettsia tillamookensis, also exists among populations of I. pacificus, although the distribution and frequency of this agent are poorly known. We evaluated DNA extracts from 348 host-seeking I. pacificus nymphs collected from 9 locations in five California counties, and from 916 I. pacificus adults collected from 24 locations in 13 counties, by using a real-time PCR designed specifically to detect DNA of R. tillamookensis. DNA of R. tillamookensis was detected in 10 (2.9%) nymphs (95% CI: 1.6–5.2%) and 17 (1.9%) adults (95% CI: 1.2–3.0%) from 11 counties of northern California. Although site-specific infection rates varied greatly, frequencies of infection remained consistently low when aggregated by stage, sex, habitat type, or geographical region. Four novel isolates of R. tillamookensis were cultivated in Vero E6 cells from individual adult ticks collected from Alameda, Nevada, and Yolo counties. Four historical isolates, serotyped previously as ‘Tillamook-like’ strains over 40 yr ago, were revived from long-term storage in liquid nitrogen and confirmed subsequently by molecular methods as isolates of R. tillamookensis. The potential public health impact of R. tillamookensis requires further investigation. 
    more » « less